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authors [AP94,RH98,Sew98] use syntactic constraints to determine whether ornot a process or location can move, the use of typing to draw this distinctionappears to be new. Second, we propose a new mobility primitive as a solutionto a problem of unwanted propagation of mobility e�ects from mobile ambientsto those intended to be immobile.Section 2 describes our system of mobility and locking annotations. In Sec-tion 3 we discuss the mobility primitive mentioned above. Section 4 concludesand surveys related work.2 Mobility and Locking AnnotationsThis section explains our basic type system for mobility, which directly extendsour previous untyped and typed calculi. Although we assume in this paper somefamiliarity with the untyped ambient calculus [CG98], we begin by reviewing itsmain features by example.The process a[p[out a:in b:hMi]] j b[open p:(x):Q] models the movement ofa packet p, which contains a message M , from location a to location b. Theprocess p[out a:in b:hMi] is an ambient named p that contains a single processout a:in b:hMi. It is the only subambient of the ambient named a, which itself hasa sibling ambient b[open p:(x):Q]. Terms out a, in b, and open p are capabilities,which processes exercise to cause ambients to move or to be opened.In this example, the process out a:in b:hMi exercises the capability out a,which causes its enclosing ambient, the one named p, to exit its own parent, theone named a, so that p[in b:hMi]] now runs in parallel with the ambients a andb. Next, the process in b:hMi causes the ambient p to enter b, so that p[hMi] be-comes a subambient of b. Up to this point, the process open p:(x):Q was blocked,but now open p can dissolve the boundary p. Finally, the input (x):Q consumesthe output hMi, to leave the residue a[] j b[Qfx Mg], where Qfx Mg is theoutcome of replacing each occurrence of x in Q with the expression M .Two additional primitives of our calculus are replication and restriction. Justas in the �-calculus [Mil91], a replication !P behaves the same as an in�nitearray of replicas of P running in parallel, and a restriction (�n)P means: pick acompletely fresh name, call it n, then run P .Operational Semantics We recall the syntax of the typed ambient calculusfrom [CG99]. This is the same syntax as the original untyped ambient calcu-lus [CG98], except that type annotations are added to the � and input constructs,and that input and output are polyadic. We explain the types that appear inthe syntax in the next section.Expressions and processesM;N ::= expressions P;Q;R ::= processesn name (�n:W )P restrictionin M can enter M 0 inactivityout M can exit M P j Q composition2



open M can open M !P replication� null M M [P ] ambientM:M 0 path M:P action(x1:W1; : : : ; xk :Wk):P inputhM1; : : : ;Mki outputA structural equivalence relation P � Q identi�es certain processes P and Qwhose behavior ought always to be equivalent:Structural congruence (P � Q)P j Q � Q j P P � P(P j Q) j R � P j (Q j R) Q � P ) P � Q!P � P j !P P � Q;Q � R) P � Rn 6= m) (�n:W )(�m:W 0)P� (�m:W 0)(�n:W )Pn =2 fn(P )) (�n:W )(P j Q)� P j (�n:W )Q P � Q) (�n:W )P � (�n:W )Qn 6= m) (�n:W )m[P ] � m[(�n:W )P ] P � Q) P j R � Q j RP j 0 � P P � Q) !P � !Q(�n:AmbY [ZT ])0 � 0 P � Q)M [P ] �M [Q]!0 � 0 P � Q)M:P �M:Q�:P � P P � Q) (x1:W1; : : : ; xk:Wk):P(M:M 0):P �M:M 0:P � (x1:W1; : : : ; xk :Wk):QWe specify process behavior via a reduction relation, P ! Q. The rules onthe left describe the e�ects of, respectively, in, out , open , and communication.Reduction (P ! Q)n[in m:P j Q] j m[R]! m[n[P j Q] j R] P ! Q) P j R! Q j Rm[n[out m:P j Q] j R]! n[P j Q] j m[R] P ! Q) (�n:W )P ! (�n:W )Qopen n:P j n[Q]! P j Q P ! Q) n[P ]! n[Q]hM1; : : : ;Mki j (x1:W1; : : : ; xk:Wk):P P 0 � P; P ! Q;Q � Q0 ) P 0 ! Q0! Pfx1 M1; : : : ; xk MkgThe Type System The basic type constructions from [CG99] are the ambienttypes Amb[T ] and the capability types Cap[T ]. A type of the form Amb[T ]describes names that name ambients that allow the exchange of T informationwithin. A type of the form Cap[T ] is used to track the opening of ambients: itdescribes capabilities that may cause the unleashing of T exchanges by meansof opening subambients into the current one. An exchange is the interaction ofan input and an output operation within the local ether of an ambient. Theexchange types, T , can be either Shh (no exchange allowed) or a tuple typewhere each component describes either a name or a capability.In this paper, we enrich these types with two attributes indicating whetheran ambient can move at all, and whether it can be opened. These attributes are3



intended as two of the simplest properties one can imagine that are connectedwith mobility. (In another paper [CGG99b] we investigate more expressive andpotentially more useful generalizations of these attributes.)We �rst describe the locking attributes, Y . An ambient can be declared to beeither locked (�) or unlocked (�). Locked ambients can never be opened, whileunlocked ambients can be opened via an appropriate capability. The locking at-tributes are attached to the Amb[T ] types, which now acquire the form AmbY [T ].This means that any ambient whose name has type AmbY [T ] may (or may not)be opened, and if opened may unleash T exchanges.We next describe the mobility attributes, Z. In general, a process can pro-duce a number of e�ects that may be tracked by a type system. Previously wetracked only communication e�ects, T . We now plan to track both mobility andcommunication e�ects by pairs of the form ZT , where Z is a 
ag indicating thata process executes movement operations (y) or does not (Y), and T is as before.A process with e�ects ZT should be allowed to run only within a compatibleambient, whose type will therefore have the form Amb [ZT ]. A capability, whenused, may now cause communication e�ects (by open) or mobility e�ects (by inand out), and its type will have the form Cap[ZT ].The following table describes the syntax of our types. An ambient typeAmbY [ZT ] describes the name of an ambient whose locking and mobility at-tributes are Y and Z, respectively, and which allows T exchanges.TypesY ::= locking annotations Z ::= mobility annotations� locked Y immobile� unlocked y mobileW ::= message types T ::= exchange typesAmbY [ZT ] ambient name Shh no exchangeCap [ZT ] capability W1 � � � � �Wk tuple exchangeThe type rules are formally described in the next tables. There are three typ-ing judgments: the �rst constructs well-formed environments, the second tracksthe types of messages, and the third tracks the e�ects of processes. The rules forin and out introduce mobility e�ects, and the rule for open requires unlockedambients. The handling of communication e�ects, T , is exactly as in [CG99].Good environment (E ` �)Good expression of type W (E `M :W )Process with mobility Z exchanging T (E ` P : ZT )? ` � E ` � n =2 dom(E)E; n:W ` � E0; n:W;E00 ` �E0; n:W;E00 ` n : WE ` �E ` � : Cap [ZT ] E `M : Cap [ZT ] E `M 0 : Cap [ZT ]E `M:M 0 : Cap[ZT ]4



E ` n : AmbY [ZT ]E ` in n : Cap[yT 0] E ` n : AmbY [ZT ]E ` out n : Cap[yT 0] E ` n : Amb�[ZT ]E ` open n : Cap [ZT ]E `M : Cap [ZT ] E ` P : ZTE `M:P : ZT E `M : AmbY [ZT ] E ` P : ZTE `M [P ] : Z0T 0E; n:AmbY [ZT ] ` P : Z0T 0E ` (�n:AmbY [ZT ])P : Z0T 0 E ` �E ` 0 : ZT E ` P : ZT E ` Q : ZTE ` P j Q : ZTE ` P : ZTE ` !P : ZT E; n1:W1; : : : ; nk:Wk ` P : ZW1 � � � � �WkE ` (n1:W1; : : : ; nk:Wk):P : ZW1 � � � � �WkE `M1 :W1 � � � E `Mk :WkE ` hM1; : : : ;Mki : ZW1 � � � � �WkFor example, consider the untyped process discussed at the beginning of thissection. Suppose that the messageM has typeW . We can type the process underthe assumption that a is a locked, immobile ambient (Amb�[YShh ]), that p is anunlocked, mobile ambient (Amb�[yW ]), and that b is a locked, mobile ambient(Amb�[yW ]). More formally, under the assumptions E ` a : Amb�[YShh ], E `p : Amb�[yW ], E ` b : Amb�[yW ], E `M : W , and E; x:W ` P : yW we canderive that E ` a[p[out a:in b:hMi]] j b[open p:(x:W ):P ] : YShh .As customary, we can prove a subject reduction theorem asserting the sound-ness of the typing rules. It can be interpreted as stating that every communica-tion is well-typed, that no locked ambient will ever be opened, and that no in orout will ever act on an immobile ambient. As in earlier work [CG99], the proofis by induction on derivations.Theorem 1. If E ` P : ZT and P ! Q then E ` Q : ZT .Remark 1. The type system of [CG99] can be embedded in the current typesystem by taking Amb[T ] = Amb�[yT ] and Cap [T ] = Cap[yT ].Encoding Channels Communication in the basic ambient calculus happensin the local ether of an ambient. Messages are simply dropped into the ether,without specifying a recipient other than any process that does or will exist inthe current ambient. Even within the ambient calculus, though, one often feelsthe need of additional communication operations, whether primitive or derived.The familiar mechanism of communication over named channels, used bymost process calculi, can be expressed fairly easily in the untyped ambient cal-culus. We should think, though, of a channel as a new entity that may residewithin an ambient. In particular, communications executed on the same channelname but in separate ambients will not interact, at least until those ambientsare somehow merged.The basic idea for representing channels is as follows; see [CG98,CG99] fordetails. If c is the name of a channel we want to represent, then we use a name5



cb to name an ambient that acts as a communication bu�er for c. We also use aname cp to name ambients that act as communication packets directed at c. Thebu�er ambient opens all the incoming packet ambients and lets their contentsinteract. So, an output on channel c is represented as a cp packet that enterscb (where it is opened up) and that contains an output operation. Similarly,an input on channel c is represented as a cp packet that enters cb (where it isopened up) and that contains an input operation; after the input is performed,the rest of the process exits the bu�er appropriately to continue execution. Thecreation of a channel name c is represented as the creation of the two names cband cp. Similarly, the communication of a channel name c is represented as thecommunication of the two names cb and cp.This encoding of channels can be typed within the type system of [CG99].Let Ch [T ] denote the type of a channel c exchanging messages of type T . Thistype can be represented as Amb[T ] � Amb[T ], which is the type of the pair ofnames cb; cp. Packets named cp have exchange type T by virtue of performingcorresponding inputs and outputs. Bu�ers named cp have exchange type T byvirtue of opening cp packets, and unleashing their exchanges.The natural question now is whether we can type this encoding of channelsin the type system given earlier. This can be done trivially by Remark 1, bymaking all the ambients movable and openable. But this solution is not verysatisfactory. In particular, now that we have a type system for mobility, wewould like to declare the communication bu�ers to be both immobile and locked,so that channel communication cannot be disrupted by accidental or maliciousactivities. Note, for example, that a malicious packet could contain instructionsthat would cause the bu�er to move when the packet is opened. Such a packetshould be ruled out as untypable if we made the bu�er immobile.The di�culty with protecting bu�ers from malicious packets does not ariseif we use a systematic translation of a high-level channel abstraction into thelower-level ambient calculus. However, in a situation where code is untrusted(for example, mobile code received from the network), we cannot assume thatthe ambient-level code interacting with the channel bu�ers is the image of ahigh-level abstraction. Thus, we would like to typecheck the untrusted code tomake sure that it satis�es the mobility constraints of the trusted environment.We now encounter a fundamental di�culty that will haunt us for the restof this section and all of the next. In the type system given earlier, we cannotdeclare bu�ers to be immobile, because bu�ers open packets that are mobile;therefore, bu�ers are themselves potentially mobile. Packets must, of course, bemobile because they must enter bu�ers.We have explored several possible solutions to this problem. In the rest ofthis section we present a di�erent (more complex) encoding of channels thatsatis�es several of our wishes. In the next section we add a typed primitive thatallows us to use an encoding similar to the original one; this new primitive hasother applications as well. In addition, one could investigate more complex typesystems that attempt to capture the fact that a well-behaved packet moves onceand then becomes immobile, or some suitable generalization of this notion.6



The idea for the encoding shown below comes from [CG99], where an alter-native encoding of channels is presented. In that encoding there are no bu�ers;the packets, though, are self-coalescing, so that each packet can act as an ex-change bu�er for another packet. Here we combine the idea of self-coalescingpackets with an immobile bu�er that contains them. Since nothing is opened di-rectly within the bu�er, the di�culty with constraining the mobility of bu�ers,described above, disappears. A trace of the di�culty, though, remains in that aprocess performing an input must be given a mobile type, even when it performsonly channel communications.We formalize our encoding of channels by considering a calculus obtainedfrom the system given earlier by adding operations for creating typed channels((�c:Ch [W1; : : : ;Wk ])P ) and for inputs and outputs over them (chn1; : : : ; nkiand c(x1:W1; : : : ; xk :Wk):P , where c is the channel name, and the ni's are otherchannel names that are communicated over it). The additional rules for typingchannels are as follows:Channel I/O, where W = Ch [W1; : : : ;Wk ]E; n:Ch [T ] ` P : ZT 0E ` (�n:Ch [T ])P : ZT 0 E ` c : W E; x1:W1; : : : ; xk :Wk ` P : ZT Z =yE ` c(x1:W1; : : : ; xk :Wk):P : ZTE ` c :W E `M1 : W1 � � � E `c Mk :WkE ` chM1; : : : ;Mki : ZTWe can translate this extended calculus into the core calculus described ear-lier. Here, we show the translation of channel types and channel operations; theother types and operations are translated in a straightforward way. We show thecomplete translation in the full version of this paper [CGG99a].Expressing channels with ambients[[Ch [W1; : : : ;Wk]]]p = Amb�[y[[W1]]b � [[W1]]p : : :� [[Wk ]]b � [[Wk]]p][[Ch [W1; : : : ;Wk]]]b = Amb�[YShh ][[(�c:Ch [W1; : : : ;Wk ])P ]] = (�cb:[[Ch [W1; : : : ;Wk]]]b)(�cp:[[Ch [W1; : : : ;Wk]]]p)(cb[] j [[P ]])[[chn1; : : : ; nki]] = cp[in cb:(!open cp j in cp j hnb1; np1; : : : ; nbk; npki)][[c(x1:W1; : : : ; xk:Wk):PyT ]] = (�s:Amb�[yT ])(open s j cp[in cb:(!open cp j in cp j(xb1:[[W1]]b; xp1:[[W1]]p; : : : ; xbk:[[Wk ]]b; xpk :[[Wk]]p):s[!out cp j out cb:[[P ]]])])(The translation [[c(x1:W1; : : : ; xk:Wk):PyT ]] depends on the type of the processP , which we indicate by the subscript yT .) Note how a channel named c isencoded by an ambient named cb whose type is immobile and locked. Therefore,the type system guarantees that the channel cannot be tampered with by rogueprocesses.We can show that if E ` P : ZT is derivable in the calculus extended withchannels then [[E]] ` [[P ]] : Z [[T ]] is derivable in the original calculus, where [[E]],7



[[P ]], and [[T ]] are the translations of the environments, processes and exchangetypes of the extended calculus. Hence, this translation demonstrates a typing ofchannels in which channels are immobile ambients. However, a feature of thistyping is that in an input c(x1:W1; : : : ; xk:Wk):P , the process P is obliged to bemobile. The next section provides a type system that removes this obligation.3 Objective movesThe movement operations of the standard ambient calculus are called \subjec-tive" because they have the 
avor of \I (ambient) wish to move there". Othermovement operations are called \objective" when they have the 
avor of \you(ambient) should move there". Objective moves can be adequately emulated withsubjective moves [CG98]: the latter were chosen as primitive on the grounds ofexpressive power and simplicity.Certain objective moves, however, can acquire additional interpretations withregard to the typing of mobility. In this section we introduce objective moves, andwe distinguish between subjective-mobility annotations (the ones of Section 2)and objective-mobility annotations. It is perhaps not too surprising that theintroduction of typing constructs requires the introduction of new primitives.For example, in both the �-calculus and the ambient calculus, the introductionof simple types requires a switch from monadic to polyadic I/O.We consider an objective move operation that moves to a di�erent locationan ambient that has not yet started. It has the form goN:M [P ] and has the e�ectof starting the ambient M [P ] in the location reached by following, if possible,the path N . Note that P does not become active until after the movement iscompleted.Unlike in and out, this go operation does not move the ambient enclosing theoperation. Possible interpretations of this operation are to install a piece of codeat a given location and then run it, or to move the continuation of a process toa given location.When assigning a mobility type to the go operation, we can now make asubtle distinction. The ambient M [P ] is moved, objectively, from one place toanother. But after it gets there, maybe the process P never executes subjectivemoves, and therefore M can be declared subjectively immobile. Moreover, thego operation itself does not cause its surrounding ambient to move, so it mayalso be possible to declare the surrounding ambient subjectively immobile.Therefore, we can move an ambient from one place to another without notic-ing any subjective-mobility e�ects. Still, something got moved, and we would liketo be able to track this fact in the type system. For this purpose, we introduceobjective-mobility annotations, attached to ambients that may be objectivelymoved. In particular, an ambient may be objectively mobile, but subjectivelyimmobile.In conclusion, we achieve the task, impossible in the type system of Section 2,of moving an immobile ambient, once. (More precisely, the possible encodingsof the go operation in terms of subjective moves are not typable in the type8



system of Section 2 if we setM to be immobile.) The additional expressive powercan be used to give a better typing to communication channels, by causing acommunication packet to move into a bu�er without requiring the packet to beitself mobile, and therefore without having to require the bu�er that opens thepacket to be mobile.To formalize these ideas, we make the following changes to the system ofSection 2. Using objective moves we can type an encoding of channels whicheliminates the immobility obligation noted at the end of the previous section.Moreover, in the full paper [CGG99a], objective moves are essential for encodingan example language, in which mobile threads migrate between immobile hosts.Additions to process syntax, structural congruence, and reductionP;Q;R ::= go N:M [P ] objective move� � � as in Section 2go �:M [P ] �M [P ]P � Q)go N:M [P ] � go N:M [Q] go (in m:N):n[P ] j m[Q]! m[go N:n[P ] j Q]m[go (out m:N):n[P ] j Q]! go N:n[P ] j m[Q]The types of the system extended with objective moves are the same as thetypes in Section 2, except that the types of ambient names are AmbY Z0 [ZT ],where Y is a locking annotation, T is an exchange type, and Z 0 and Z are anobjective-mobility annotation and a subjective-mobility annotation, respectively.Modi�cations and additions to type syntax and typingAmbY [ZT ] becomes AmbY Z00 [ZT ] in the syntax of types and in all the ruleswhere it appears. Add the following rule:E ` N : Cap[Z0T 0] E `M : AmbY Z0 [ZT ] E ` P : ZTE ` go N:M [P ] : Z00T 00Theorem 2. If E ` P : ZT and P ! Q then E ` Q : ZT .4 Conclusions and Related WorkWe have argued [CG98,Car99,CG99,GC99] that the idea of an ambient is a usefuland general abstraction for expressing and reasoning about mobile computation.In this paper, we quali�ed the ambient idea by introducing type systems thatdistinguish between mobile and immobile, and locked and unlocked ambients.Thus quali�ed, ambients better describe the structure of mobile computations.The type systems presented in this paper derive from our earlier work on ex-change types for ambients [CG99]. That type system tracks the types of messagesthat may be input or output within each ambient; it is analogous to Milner'ssort system for the �-calculus [Mil91], which tracks the types of messages thatmay be input or output on each channel.9
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